AFRL-HE-WP-TR-2000-0110

UNITED STATES AIR FORCE
RESEARCH LABORATORY

Integrating Object-Oriented Simulation and
Interactive Optimization Methods for
Logistics Systems Analysis

S. Narayanan
Chetan Patel
Nicole L. Schneider
Hitesh Nandha

Department of Biomedical & Human Factors Engineering
207 Russ Engineering Center
Wright State University
Dayton, OH 45435

February 1997

Final Report for the Period March 1996 to February 1997

20001013 047

- Human Effectiveness Directorate
. . L Deployment and Sustainment Division
Approved for public release; distribution is unlimited. Logistics Readiness Branch
2698 G Street
Wright-Patterson AFB OH 45433-7604

NOTICES

When US Government drawings, specifications or other data are used for any purpose other than a
definitely related Government procurement operation, the Government thereby incurs na responsibility nor
any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way
supplied the said drawings, specifications or other data, is not to be regarded by implication or otherwise, as
in any manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional copies may
be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Federal Government agencies registered with the Defense Technical Information Center should direct
requests for copies of this report to:

Defense Technical Information Center

8725 John J. Kingman Rd., Ste 0944

Ft. Belvoir, VA 22060-6218

DISCLAIMER
This Technical Report is published as received and has not been edited by the Air Force Research
Laboratory, Human Effectiveness Directorate.
TECHNICAL REVIEW AND APPROVAL
AFRL-HE-WP-TR-2000 -0110

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including

foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER
Q/ Z/ =
BERT'S. TORIGIAN, Lt Col/USAF
Deputy Chief

Deployment and Sustainment Division
Air Force Research Laboratory

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubfic reporting burden for this collection of information is estimated to average 1 hour per response, inciuding the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1216 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. AGENCY USE ONLY (Leave blank] | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
. February 1997 Final - March 1996 - February 1997

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Integrating Object-Oriented Simulation and Interactive Optimization Methods for C - F41624-95-C-6014
Logistics Systems Analysis PE - 62202F

PR - 1710

6. AUTHORI(S) TA -D2

S. Narayanan, Chetan Patel, Nicole L. Schneider, Hitesh Nandha WU - 09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Biomedical & Human Factors Engineering REPORT NUMBER '
207 Russ Engineering Center

Wright State University

Dayton, OH 45435
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory, Human Effectiveness Directorate AGENCY REPORT NUMBER

Deployment and Sustainment Division
Air Force Materiel Command
Logistics Readiness Branch

Wright-Patterson AFB, OH 45433-7604
11. SUPPLEMENTARY NOTES

AFRL-HE-WP-TR-2000-0110

72a DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

{73 ABSTRACT (Maximum 200 words)
User interfaces in interactive simulations convey the dynamic behavior of the modeled system and allow the analyst to interact
with the executing simulation. Traditionally, the software to display the system behavior and to facilitate user interaction has
been embedded in the simulation model. Such tight integrations make it difficult to maintain large simulations and impose
unnecessary limitations on the development of interfaces to a simulation model. This report presents a portable, object-based
architecture, called JADIS (Java-based Architecture for Developing Interactive Simulations), for developing interactive
simulations. The architecture is implemented in Java and applied the Model View-Controller paradigm to the development of
interactive simulations. In JADIS, the simulation model and its user interfaces are distinct processes that execute
concurrently. JADIS integrates concepts from object-oriented programming, concurrent, distributed processing, and human
factors interface design in developing interactive simulations. This report describes the JADIS architecture and presents its
application to an aircraft repair time analysis problem in the domain of airbase logistics.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Interactive Simulation Methodology, Object-Oriented Programming, Airbase Logistics 38
Modeling, Java Programming Language, Model-View-Controller Framework 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 (Rev. 2-89) (EG)
i Prescribed by ANS! Std. 239.1

Designed using Perform Pro, WHS/DIOR, Oct 94

THIS PAGE LEFT INTENTIONALLY BLANK

ii

PREFACE

This report summarizes work conducted under work unit 1710-D2-09, Optimization
Method for Integration with the Integrated Model Development Environment. The work
was performed under contract by Wright State University, Dayton, Ohio. Dr. S.
Narayanan, was the principal investigator. Captain Todd Carrico and 1% Lt. John
DiPasquale, Air Force Armstrong Laboratory, served as the Laboratory program
managers. .

iii

CONTENTS

SUMMALRY ettt ettt et te et ear e e et e e s st e eaneeebeeereeeneeenes 1
INTRODUCTION ...ttt sttt ettt e ste e te e beeste e easeesaeeeneesaaeenseenns 2
ARCHITECTURE DESIGN ...ttt ettt eae e 3
ARCHITECTURE IMPLEMENTATION ...cc.oiriiiiiiiiiccretteie sttt e 5
Solution EXPIOTETc.ooviiiii e 7
INPUL SPECILIET ..ottt e 7

SIMULALOT ..ottt ettt ettt e s e e e e as 8
Encoder/DecOder ..ottt et 9

Genetic Algorithm Iteratorcoocviiiiiiiiiiie et 10

Final Solution Set GENEeTaOrccc.eiiiiereereieiiieer ettt 11
INteractive ANALYZETocuiiiiiiiiiiieee ettt e ba e e e 11
Interactive SIMUIALOT ...cocviiiiiiiiiiiee et 11

VISUALIZET ..ottt sttt ettt s e et e st e st e et eeneaansaeas 14
ARCHITECTURE APPLICATION ...ccooiiiiiiiiiiiititecteeeee et 15
RELATED RESEARCH ...ttt sttt e sv e ea et 20
Object-Based SImMUIAtIONScc.ccveriiriiiiiiiieieieieni et 20
Visual Interactive SIMUIAtIONSocueiiiiiiieiiiei et 25
Genetic Algorithms & Interactive OptimiZationcccceeveveeiernnireesereereeeniieeane 27
CONCLUSIONS ettt ettt h e st esbe e st e saaeenateenbeeaneeane 28
BIBLIOGRAPHY ..ottt s ettt ae st et esne et enenneenaens 29
APPENDIX: GLOSSARY OF COMMONLY USED OOP TERMS.ccccccivviiiinnnine 32

iv

sis.

No RN S B N O R o

11
12
13

FIGURES

Components of an Integrated Architecture for Exploring Alternatives and Interactive Analysis. 4
Illustration of the Java Virtual Machine EnVIFORMENT.oocvcorieiniiriiiieceienrit e e s saeienas 6

Partial Input File Containing Design Constants and Decision Variables for Aircraft Repair Time Analy-

.. 7
Illustration of the Encoding Process for a Partial Input Set in Airbase Simulation.ccovvorvicencee. 9
Application-Independent Software Abstractions in JADIS. ..o 12
Hierarchy of Salient Classes in the Simulation of Airbase Logistics Domain.ccccoenenieceeennee. 17
Input Screen for the Solution Explorer to Obtain the GA Parameters.c.cocovveiieininiisiereiennnnens 18
Input Screen for the User to Specify Weights to the Different Performance Measures.cccocveee.e. 19
Illustrative Example of GA-based Heration. ...ttt et 20
Main Interface Window for the Interactive ANalyzer.coocoveviimiiviiiiiniiecreteeere e e 21
Graphical Output of a Snapshot of Airbase SImulation. ..., 22
Visualization of the Dynamics in Airbase SIMulation. ..., 23
Pareto Optimal Solution for an Aircraft Repair Time Analysis Problem.cccoovviniiiiiinininnennn 24

THIS PAGE LEFT INTENTIONALLY BLANK

vi

SUMMARY

This report documents the results of an approach to integrate simulation, human interaction, and
evolutionary learning for solving planning problems in airbase logistics systems. Specifically, it de-
scribes the integrative approach, the design and implementation of the components of the architec-
ture to support the integrative approach, the application of the architecture to an aircraft repair time
analysis problem, and related research efforts in object-based simulations, visual interactive simu-

lations, genetic algorithms, and interactive optimization.

The approach developed in this project is intended to facilitate computer-based aiding, where ana-
lysts can avoid the tedious work associated with the generation of alternative design configurations
and focus their efforts on finding satisfactory solutions to complex problems. The two major com-
ponents in the architecture are a solution explorer and an interactive analyzer. The solution explorer
takes a set of design configurations as input and generates a better solution set based on genetic al-
gorithms and an object-based discrete-event simulator. The interactive analyzer takes the better so-
lution set as input and presents a synthetic environment to an analyst for what-if analysis and system
visualization. All the components of the architecture are implemented in the Java programming lan-

guage and are therefore portable across computing platforms.

The architecture is object-based and contains software abstractions for systems modeling, genetic
algorithm iteration, interactive simulation development, and Pareto optimal analysis in multi-crite-
ria decision making. The architecture is demonstrated in the context of its application to an aircraft
repair time analysis problem. Results of the study are very promising. The solution explorer elimi-
nated several inferior solutions and generated better design sets. The interactive analyzer highlight-
ed the effect of selecting different weights to the performance measures on design alternatives and

assisted in selection of the best alternative for a small-scale problem.

Further study is needed to augment these results. Application of the architecture to real world data
would further facilitate evaluation of the approach and highlight strengths and drawbacks of the ar-
chitecture in effectively integrating human decision making with systems modeling and evolution-

ary learning techniques.

INTRODUCTION

Airbase logistics is a large and complex domain involving logistics processes that support aircraft
sortie generation at operational airbases. For fighter aircraft, a sortie is the takeoff, mission execu-
tion, and landing of a single aircraft. Several aircraft may be required to fly together in a mission.
In part, airbase logistics involves aircraft maintenance, parts supply, and munitions loading (Pop-
ken, 1992). Models of logistics processes are useful in analysis for aircraft acquisition planning,

maintenance personnel allocation, and theater-level supply redistribution.

In an airbase, there are aircraft of different kinds with varying configurations and capabilities. An
aircraft is comprised of several subsystems. A typical fighter aircraft, for example, has over 300
subsystems. Sortie take-off times can be scheduled in a variety of ways from uniform random gen-
eration, flying when refueled and ready, to a specific flight schedule. Each sortie specifies the num-
ber of aircraft required, the type of each aircraft, and the details of the mission. While the aircraft is
in operation one or more of its subsystems may fail. When a subsystem of an aircraft fails, it is sent

to maintenance for repairs.

In a typical Air Force squadron or wing, there is a pool of personnel assigned to maintenance. With-
in this pool will be a variety of specialties which corresponds to areas in which the technicians are
certified to perform repairs. Each repair evaluation may require aerospace ground equipment

(AGE), test equipment, or special tools. Most repairs also require replacement parts.

For each configuration of aircraft, personnel, equipment, and spares, there is a wide range of sortie
generation criteria that can be satisfied. The challenge is to determine if any given set of sortie re-
quirements can be sustained for a period of time without generating excessive resource queue wait
times. Each time an aircraft cannot fly due to repair problems, it is considered a maintenance abort.
Models are useful to determine an efficient mix of logistics resources including spare parts, person-
nel, support equipment, and facilities to achieve a desired sortie rate (Boyle, 1990). Various related
performance measures include maintenance cost, sorties completed, sorties aborted, facility utiliza-

tion, and personnel utilization (Carrico & Clark, 1995; Carrico et al., 1995).

Two types of models have been applied extensively in logistic systems analysis: prescriptive mod-

els and descriptive models. Prescriptive models yield decisions about systems while descriptive

models evaluate the performance of a fully specified system (Dietrich, 1991). Descriptive models
can also be used to analyze the impact of decisions through what-if analyses and thus, are useful as
decision-making aids. Simulation is one of the most flexible descriptive modeling methods. The
quality of the final solution in applying what-if analysis, however, is limited to the nature of alter-

natives that are examined.

Due to the complexity of the logistics domain and the qualitative nature of secondary objectives,
problems such as aircraft repair time analysis are not amenable to purely prescriptive modeling
methods such as math programming. What is needed is an approach that integrates simulation, evo-
lutionary learning (Lu, et al., 1991), and human interaction (Ammons, et al., 1988) for solving de-

sign and planning problems in airbase logistics.

The overall goal of this project was to develop an approach integrating simulation, evolutionary
learning, and human interaction to support generation of satisfactory solutions to complex problems
in airbase logistics planning. Our approach is intended to facilitate computer-based aiding, where
analysts can avoid the tedious work associated with generation of alternative designs and focus their
efforts on finding good, “close to optimal” solutions to complex problems. Specific tasks include
design, implementation, and evaluation of an integrated architecture to couple simulation, learning,

and human interaction for an aircraft repair time analysis in the airbase logistics domain.

Section 2 describes the design of an integrated architecture. Section 3 discusses the implementation
of the architecture in terms of the various components in it. Section 4 outlines the application of the
architecture to an aircraft repair time analysis problem. Section 5 highlights related research efforts
in interactive simulations, genetic algorithms, and human decision aiding. Section 6 presents con-

clusions of the study.

ARCHITECTURE DESIGN

The architecture has two major components: (1) a solution explorer, and (2) an interactive analyzer.
The solution explorer is involved in the generation of good feasible design alternatives, while the
interactive analyzer assists in the selection of the “best” feasible alternative by providing a synthet-

ic environment for what-if analysis.

(93}

Figure 1 illustrates the various components of the architecture. The solution explorer has five major

SOLUTION EXPLORER\
INPUT SPECIFIER
DESIGN CONSTANTS|
> SIMULATOR

INPUT TO

SIMULATOR S
DESIGN VARIABLES Discrete-cvent simulation
(DECISION architecture
ALTERNATIVES) /

GA parameters

Performance Criteria Weights

Next generation
decoded to a form
readable by simulator

Input & fitness
encoded to a
form operable

by GA
ANALYST
SOLUTION SET] GENETIC ALGORITHM
GENERATOR After the ITERATOR
last generation
r<@————— GA operators including
. * reproduction
decoding * crossover
* mutation
/L
INTERACTIVE ANALYZER
* Visualization
INPUT TO SIMULATOR |_g,.| Simulation | Interface * What-if analysis
el —
K . FINAL SOLUTION
Figure 1

Components of an Integrated Architecture for Exploring Alternatives and Interactive Analysis.

)

modules: (1) input specifier, (2) simulator, (3) encoder/decoder, (4) genetic algorithm iterator, and

(5) final solution set generator. The solution explorer is initiated by a human analyst. The analyst

specifies a set of initial solutions that are to be used by the explorer to generate better solutions. Part

of the input specification is constant whereas the remaining portion constitutes decision variables

that can be changed during the solution exploration phase. The analyst also specifies the relative

importance of various performance measures in the system as well as parameters for the genetic al-

gorithm iterator. The simulator encapsulates a descriptive model of the system for which the alter-
natives need to be explored. The encoder transforms the simulation input to a form operable by the
genetic algorithm iterator and the decoder performs the reverse process. The genetic algorithm it-
erator performs evolutionary learning through random, yet directed, search of the solution space
through the application of operators such as reproduction, crossover, and mutation (Goldberg,
1989). After the specified number of iterations through the genetic algorithm iterator, the decoded
output from the genetic algorithm iterator comprises the final solution set that can be examined by

the interactive analyzer.

The interactive analyzer consists of an interactive simulator based on the Model-View-Controller
paradigm (Goldberg, 1990; Krasner & Pope, 1988). The solution set generated by the solution ex-
plorer can be thoroughly examined by a human analyst through what-if analysis and visualization
of the solutions. Analysts can generate a Pareto optimal solution for multi-criteria decision making
problems and also make real-time decisions such as modifying scheduling disciplines or altering
maintenance resources in the context of a running simulation. Through analysis, the human selects

the best feasible alternative for the specific design and planning problem.

Our approach attempts to couple computational tools with human intelligence in a single integrated
system that maximizes joint performance (Woods, 1986). Our approach is based on several assump-
tions. First, it is assumed that several feasible solutions exist for a given design or planning problem.
Second, our approach assumes that humans are better at examining a few different alternatives rath-
er than in the generation of several alternatives to the design problem (Brill, et al., 1990). Third, it
is assumed that the decision variables in the system can be represented in a form for which genetic
algorithms can be applied. Fourth, our approach assumes that closed-form analytical solutions do
not exist for the problem for which the approach is being applied and that analysts rely primarily on

heuristic decision making and both quantitative and qualitative criteria in decision making.

ARCHITECTURE IMPLEMENTATION

All components of the architecture are implemented in the Java programming language. Java is an
object-oriented programming (OOP) language whose syntax is similar to C++ and supports encap-
sulation, inheritance, and polymorphism. A glossary of terms commonly used in OOP is included

in the Appendix. Java has become a popular programming language on the Internet due to applets.

Applets are Java programs that can be embedded on home pages on the world wide web. Java can
also be used as a standard programming language, constructing stand-alone applications indepen-
dent of web pages. The Java language contains various packages (similar to software libraries) for
general data structures, applets, file input/output, and also for graphical user interfaces. Java is mul-
tithreaded and hence particularly suitable for distributed computing (Niemeyer & Peck, 1996). Java
can be used for both creating simulations as well as for creating interfaces to simulations unlike lan-
guages such as C++, where we need to use X windows, Motif, or other external software libraries
for interfaces. A major advantage of using Java is its portability. Typically, source code written in
Java is compiled into byte code that can be read by an interpreter available on multiple platforms
including personal computers, Macintoshes, and UNIX workstations. The software can be devel-
oped on any platform that contains the Java Development Kit (JDK). JDK is available on most op-
erating systems including Solaris, Windows 95, Windows NT, and MacOS. The Java
compiler in JDK generates byte code from the Java source code. The byte code can then be moved
to other platforms and can be executed without altering the code. Figure 2 outlines the Java virtual

machine environment.

Java Source Code (Foo.java)
clase Fool
constructor;methods;)

¢ javac Foc.java

Java Byte Code

(Foo.class)

java Foo
(interpreter to run the
application)

UNIX Workstation Macintosh

Figure 2
TMlustration of the Java Virtual Machine Environment.

The implementation of the various modules of the two components of the architecture: (1) solution

explorer and (2) interactive analyzer are described below.

Solution Explorer

Input Specifier

The input specifier module is used by a human analyst to specify a set of input configurations that
the solution explorer takes in as initial solutions. The input is in the form of ASCII text files, where
the design parameters are broken into constants and decision variables. The variable part of the de-
sign input gets changed during the iterative process. An analyst also specifies the weights of the var-
ious performance criteria in the system and also inputs the parameters of the genetic algorithm
iterator (e.g., number of iterations). Figure 3 illustrates a partial input file consisting of a few design
constants and several decision variables in the context of an aircraft repair time analysis problem.
In the example shown, three major parameters including number of aircraft, personnel data, and

equipment data are the decision variables.

File containing design constants File containing decision variables
SIMULATION INFO numParams 3
simEndTime 100 # AIRCRAFT DATA
simStartTime O numAircraftType 2

52 numAirCraft 10
SCHEDULER INFO 53 numAirCraft 15
schedulerType RANDOM
generationRate seed 102567 # PERSONNEL DATA
generatianate upperBound 5.0 numPersonnelType 2
generationRate lowerBound 1.0 FFSC numPersonnel 4

FSC numPersonnel 5
RANDOM SCHEDULE INFO

takeOffTime seed 125469 # EQUIPMENT DATA
takeOffTime lowerBound 2 numEquipmentType 2
takeOf£fTime upperBound 4 MC-1A numEquipment 2
flightDuration seed 427689 N2-CART numEquipment 2
flightDuration lowexrBound 1 MC-1A numEquipment 1
flightDuration upperBound 4 N2-CART numEquipment 2

AM32C-10 numEquipment 3
SUBSYSTEM INFO
52 subCount 3
Door

Engine

Brake

Figure 3
Partial Input File Containing Design Constants and Decision Variables for Aircraft Repair Time Analysis.

Simulator

The simulator module in the solution explorer consists of the application-independent components
of the simulation infrastructure including a random number generator, various standard statistical
distributions (such as Uniform, Exponential, Normal, and LogNormal), an event calendar

which keeps track of future events, a simulation clock, and general queueing support.

The simulator also contains classes to represent entities and their interrelationships in the applica-
tion domain. The development of the Java classes to model the airbase logistics processes are
based on three design principles. First, the simulation objects should have a direct correspondence
to the resources, material, and control processes in the airbase logistics domain. Object-oriented
programming (OOP) enables a developer to build software abstractions in simulations that have a
direct correspondence with real world objects (Narayanan et al., 1996). In our architecture, we
exploited the natural mapping and modularity features of OOP and developed a large number of
Java classes such as Aircraft, Hangar, Spares, and Equipment that have a direct map-
ping to real world entities and logistic processes. The second design principle is to make objects
that represent decision making distinct from physical objects and information storage objects. In
applying JADIS (Java-based Architecture for Developing Interactive Simulation) to airbase logis-
tics, physical objects such as Aircraft are distinguished from decision making objects (e.g.,
ResourceManager) and information storage objects (e.g., ResourceStatistics). Simu-
lations facilitate the study of complex systems, by decomposing the decisions, the data used by the
decision logic, and the results of the decisions on the physical system in a structured manner. The
approach of making the physical-control-information decomposition has been successfully applied
by several researchers in object-oriented simulations of large manufacturing systems (Adiga &
Glassey, 1991; Mize et al., 1992; and Narayanan et al., 1992 & 1996). Hence, applying a similar
principle in modeling large, complex, and dynamic airbase logistics systems is appealing. The
final design principle is related to rapidly assembling simulations of a system for different config-
urations. A major goal of the solution explorer is to represent alternative system configurations.
Therefore, the hierarchy of classes and the implementation of the classes are designed to facilitate
rapid assembly. The classes are designed to be modular and extensible. Detailed descriptions of

specific classes implemented for aircraft repair time analysis is described in Section 4.

Since the goal of the solution explorer is to represent alternate designs and there is little human in-

teraction after the initial parameters are specified, the simulator module does not have a graphical

8

user interface to depict the system dynamics. The performance measures are gathered during the
execution of the simulation program, user-specified weights are applied to generate the fitness value
of the specific input configuration, and the relevant values are communicated to the genetic aigo-

rithm iterator.

Encoder/Decoder

The encoder translates the variable decision alternatives part of the design input into a form that can
be used by the Genetic Algorithm iterator. Each input set is represented by a string called genome.
Each genome is in turn made up of subunits called traits. Each trait stores an encoded value of an
input set parameter. The genome also stores a fitness value associated with the input set. The fitness
value is generated by the simulator. The process associated with the encoding/decoding mechanism
is dependent on the specific problem being analyzed. In our design, the genome and traits can be of
variable lengths. The parameter values are encoded in the octal format. The encoding process con-
verts integers and floats into octal representations. The trait also contains a key that will indicate the
number of digits used to encode each part of the trait. Figure 4 illustrates the encoding process for
a partial input set. The decoding process is a reverse of the encoding mechanism. The example
shows the encoding in the octal format for three parameters and nine values. The final input string

forms an input sample in the population that evolves in the GA iterator.

INPUT SET # ENCODED VALUE
PARAMETER NAME VALUE

#

AirCraft Data

airBase-52 numAirCraft 10 12

airBase-53 numAirCraft 15 17

Personnel Data
airBase-FFSC numPersonnel 2 Encoding 02

airBase-FSC numPersonnel 3 ’03
Equipment Data

airBase-AM32C-10 numEquipment 2 Decoding 02
airBase-AM32A-10 numEquipment 2 < 02
airBase-MC-2A numEquipment 2 02
airBase-MC-1A numEquipment 2 02
airBase-N2-CART numEquipment 2 02

FINAL INPUT STRING: 121702030202020202
(The final input string shown above forms a sample in the population.)
KEY: 2 (indicates number of digits per parameter)
Figure 4
Illustration of the Encoding Process for a Partial Input Set in Airbase Simulation.

Genetic Algorithm Iterator

The genetic algorithm (GA) iterator applies random, but directed search algorithms based on the
mechanics of natural selection and genetics. GAs are particularly useful for complex systems where
traditional analytical techniques such as calculus-based and enumerative techniques fair poorly.
GAs have been successfully applied in many applications in function optimization, image process-
ing, engineering, and business (Goldberg, 1989). Four major differences exist between the conven-
tional optimization techniques and GA based optimization. First, GAs work on the direct
manipulation of a coding of the decision variables unlike traditional methods which usually deal
with functions and control variables directly. Second, GAs work from a population rather than a sin-
gle point solution used by many traditional methods. Thus, GA-based search methods are suitable
for situations where local optima exist. Third, the search process in GA is via sampling from the
population and primarily relies on the payoff from solutions set. Traditional methods rely heavily
on application-specific information. Thus, GAs are more easily applicable to situations where the
mathematical formulation of the problem is hard. Finally, the search in GAs is based on stochastic
operators, not deterministic rules as used in simple random walks, making GA based search process

highly exploitative.

In our architecture, the GA iterator is devetoped along the same lines as GAlib, a C++ library of GA
components developed by Matthew Wall at MIT. The GA iterator in our architecture is implement-
ed in Java and is tailored to airbase logistics problems. Major classes implemented include Genome
(contains an input set string), Trait (stores trait values for each genome), Population (encap-
sulates population information), GAStatistics (stores statistics generated during the GA pro-
cess), GAScaling (represents the scheme to perform fitness scaling), GAMutationScheme
(defines the scheme for mutation), GASelectionScheme (has the scheme for reproduction of
genomes), and GACrossoverScheme (has the details of the crossover operation). The fitness
values of input sets are obtained from the simulator and is a function of the various performance
measures. The population size is assumed to be fixed. We apply three GA operators: reproduction,
crossover, and mutation. The parameters of the GA are user specified. The crossover operation
takes place in two parts. First, the specific trait in the genome where the crossover occurs is deter-
mined. Then, the specific part of the trait to crossover is determined. Reproduction and mutation
operation occurs like in the simple GA mechanism described in Goldberg (1989). Through several

iterations of the GA operators, the solution space is explored.

Final Solution Set Generator

After the user-specified number of iterations are completed, the population set is decoded by the
final solution set generator to form the set of solutions that are to be examined by the interactive
analyzer. The decision variables are assembled with the design constants to form solutions to the

design problem.

Interactive Analyzer

The interactive analyzer enables the human analyst to closely examine a few good, feasible solu-
tions generated by the solution explorer. The interactive analyzer contains capabilities for interac-

tive simulation as well as visualization of results.

Interactive Simulator

Our integrated architecture contains a portable, object-based simulator called JADIS for interactive
simulations. User interfaces in interactive simulations convey the dynamic behavior of the modeled
system and also allow the analyst to interact with the executing simulation. JADIS integrates con-
cepts such as Model-View-Controller, concurrent, distributed processing, and human factors inter-
face design in developing interactive simulations. An introduction of interactive simulations and
details of JADIS can be found in Narayanan et al. (1997). A brief overview of JADIS is provided

below.

In JADIS, the simulation and user interface are two distinct processes. JADIS contains infrastruc-
ture for simulation, interface, and inter-process communication. The main simulation loop in JA-
DIS can operate in real-time or next event time transition mode. User input can be obtained through
interaction at the interface even while the simulation continues to execute. Figure 5 illustrates the

various application-independent software abstractions in JADIS.

All classes in JADIS are subclasses of the base Java class Object. In addition, there is an abstract
class, SimBase, from which several of the simulation infrastructure classes are inherited. Class
Distribution encapsulates a portable random number generator using the linear congruential
method (Law & Kelton, 1991). Classes Exponential and Uniform use the inverse transforma-

tion method in generating exponential and uniform distributions respectively. Class Rnormal gen-

Object SIMULATION INFRASTRUCTURE

SimBase Main

EventCalendar Clock

LinkedList ActiveSimulationObject

OrderedList \

Simulator

Distribution

Uniform Exponential

Rnormatl
LogNormal

Normal

Object
INTERFACE INFRASTRUCTURE

/\\» ont

Interface
MenuComponent Container .
P Canvas Button List TextComponen
MenuBar Window Exit TextField

Panel EventLog

/ Graphs
Frqmé
/Nv PicWin CommandEntry

PopUp Animation GraphWin
Object COMMUNICATION INFRASTRUCTURE

Main
Simulationlnput

Interface
Log

Note: The italicized classes are part of the Jm;ra language (Not all classes are shown).
igure 5
Application-Independent Software Abstractions in JADIS.

erates a standard normal distribution using the composition method described in Brantley, Fox, and
Schrage (1987, p.318). Class Normal generates a normal distribution with a given mean and vari-
ance by transforming the standard normal. Class LogNormal generates a log normal statistical dis-

tribution using the inverse transformation method outlined in Law and Kelton (1991, pp. 259-260).

Class Clock encapsulates the simulation clock. Clock has an updateClock method which up-

12

dates the simulation clock to the next event time if the simulation is not operating in real time or
updates the clock in microseconds corresponding to the computer system clock. Classes
LinkedList and OrderedList are queueing utilities available in JADIS. Class EventCal-
endar keeps track of the details of the events including information about the event ordered by the
time when it needs to be executed. Events which are placed on the EventCalendar must be en-
coded as methods of class ActiveSimulationObject orits subclasses. Class Main encapsu-
lates the main simulation loop in JADIS. The main loop generates a thread to obtain input from the
interface process and creates another for the simulation process to continue to execute. The main
simulation loop invokes an event from the EventCalendar at the scheduled time and updates -
the simulation clock appropriately. Class Simulator is a subclass of ActiveSimulation-~
Object and has methods to initialize the simulation parameters and exit at the end of the simula-

tion.

The abstractions comprising the interface infrastructure include the main interface process and
building blocks such as windows, menus, scrolling lists, pop-up boxes, and push buttons which are
useful in developing an interface to an interactive simulation. Most of these abstractions are sub-
classes of the elements of the abstract windowing toolkit that is part of the Java language. As shown
in Figure 5, JADIS classes in the interface infrastructure include CommandEnt ry useful for gath-
ering user commands to the simulation through a text-based command line, EventLog is a scroll-
ing list to output a log of the events occurring in the simulation, Exit is a push button to halt the
simulation and close the interface, PicWin is useful to display icons of the simulated system,
PopUp is useful to implement windows that pop up as a result of user action on the interface. Class
MenuBar is part of the Java language useful for developing menus to the interface. Classes
GraphwWin is window used to display graphs of the simulated system’s performance measures with
class Graphs providing the drawing area canvas. Class Animation assembles all the necessary
interface building blocks for a simulation. Animation has a method called processEvent
which in turn invokes a processEvent method of displayed objects. Class Interface initiates
the interface process and spawns another process to concurrently receive input from the simulation
model. Users of JADIS typically create additional subclasses of the classes in the interface infra-
structure to tailor it to the application domain. Interface classes created for the domain of airbase

logistics are outlined in the next section.

As shown in Figure 5, four major classes play an integral role in the communication infrastructure.

They are Main and Log in the simulation side and Interface and SimulationInput on the
interface side. Main spawns two threads, one for the simulation and another to receive input from
the interface process. It also has a parser to identify the command received from the interface pro-
cess. Messages are in the form of strings. Messages from the interface process to the simulation are
of the form “commandName commandDetails.” For example, when the user has clicked on the exit
button on the interface, the interface process sends the message “exit” to the simulation. Similarly,
when the user has increased the speed factor of the simulation clock to 5, the interface would send
the message “speed 5.” Class Log initializes a socket connection between the simulation process
and the interface process and has a method sendEvent to send a message from the simulation to
the interface. Messages from the simulation to the interface are of the form “ObjectName Event-
Name EventDetails.” For example, in the simulation of aircraft maintenance operations, a message
“aircraftb52-10 landed” is sent when a specific aircraft object lands after performing a mission.
Class Interface spawns the process to display the simulated system and spawns another process
to receive input from the simulation. Class SimulationInput establishes a socket connection
from the interface process to the simulation and has a method called SendCommand that sends
messages from the interface to the simulation. The communication infrastructure in JADIS is flex-
ible and modular to accommodate multiple views to the same simulation model. The application-

dependent portion of the interactive simulator is described in section 4.

Visualizer

The interface in the interactive analyzer serves to display system dynamics and to facilitate user in-
teraction. Graphical output of relevant performance measures are available at run time. Built-in ca-
pability exists for visualizing the logistic processes in aircraft maintenance. Users can also alter
information on maintenance operations and dynamically alter scheduling strategies while the sim-
ulation continues to execute. Several runs of the simulation are used for alternative designs. For
each design, the mean, variance, and confidence interval is calculated. Analyst can then query the
system for the Pareto optimal solution. The visualizer identifies the Pareto optimal for the user spec-
ified multiple objectives and presents the solution set pictorially. An analyst can also alter weights
of the performance measure and investigate the effects of criteria on the overall design. Throughout
the entire process, the architecture keeps track of the design input and associates it with the system
performance. The next section describes the application of the architecture for an aircraft repair time

analysis problem.

ARCHITECTURE APPLICATION

The architecture was applied to model a prototypical airbase facility. Maintenance operations for a
two week period were simulated with sortie generation occurring 16 hours a day for seven days a
week. Figure 6 highlights Java classes in the simulator (both in the solution explorer and interactive
analyzer) to represent entities and their interaction for aircraft maintenance. Objects that encapsu-
late events in the simulation are subclasses of ActiveSimulationObject. These include
physical objects such as Aircraft, Subsystem, Spare, Sortie, Airbase, and Resourc-
es such as Equipment, Hangar, and Personnel. The physical objects have a one-to-one
mapping to objects in the real world. Class Aircraft is a representation of aircraft in an airbase
and is comprised of several Subsystems. Class Spare represents consumable spare parts used
during maintenance. Class Sortie models sorties generated during a time horizon. Class Air-
base is a collection of several entities including Aircraft, Spares, and Resources such as
Equipment, Hangar, and Personnel. Class Equipment represents aircraft ground equip-
ment needed for maintenance operations. Class Hangar represents a hangar in an airbase and class

Personnel represents maintenance operators.

Class DecisionMaker and its subclasses encapsulate logistical decision making. Subclasses of
DecisionMaker include ResourceManager, Scheduler, FailureGenerator, and
Coordinator. The Scheduler generates sorties for an airbase. The FailureGenerator
enables subsystems in aircraft to fail according to their failure behavior. The ResourceManager
controls the handling and distribution of all resources including equipment, hangar, and personnel
needed for maintenance. The Coordinatox is an overall airbase controller responsible for con-
trolling the movements of various physical objects in an airbase. There is at least one instance of all

the decision making classes in any simulation of airbase maintenance operations.

Class InformationStorage and its subclasses encapsulate data associated with the simulation.
Subclasses of InformationStorageinclude ResourceStatistics,MaintenancelIn-
fo, AlrcraftStatistics, SubsystemStatistics, and ScheduleInfo. Class
MaintenancelInfo encapsulates data associated with the maintenance operations including type
of failure, repair time, and the necessary type and number of personnel, spares, and equipment.
Class ScheduleInfo encapsulates information associated with the sortie generation. There are

three subclasses of ScheduleInfo (not shown in Figure 6): SetScheduleInfo, Random-

15

ScheduleInfo, and FlyWhenReadyScheduleInfo, each encapsulating sortie information
according to the appropriate mode of sortie generation. Classes ResourceStatistics, Air-
craftStatistics, and SubsystemStatistics all encapsulate statistical information of

relevant performance measures gathered during the execution of the simulation program.

Figures 7 and 8 depict the input screens used by an analyst in specifying the relevant performance
measures and their relative weights. Most of the GA parameters including probability of cross over
and mutation are read from data files. Once these inputs are specified, there is little interaction be-
tween the architecture and the human analyst during solution exploration. Figure 9 presents a snap-

shot of the GA-based iterative search process.

After the specified number of iterations, the final solution set generator outputs a set of solutions to
be examined by the interactive analyzer. Figure 10 is the main interface window for the interactive
analyzer for the airbase simulation. All the visible objects are instances of the basic interface infra-
structure in JADIS. The interface has a MenuBar with five menu items, four PicWin windows
depicting graphical icons of the facility, an EventLog displaying a scrolling list of events occur-
ring on the simulation side, a CommandEntry window through which users can enter commands

to the simulation through a keyboard, and a Exit button to halt the simulation and exit the process.

Graphical outputs of various relevant performance measures are available at run time and are pre-
sented through instances of GraphWin and Graphs classes. Figure 11 illustrates graphs during a
snapshot of the system for three performance measures including sorties completed, equipment uti-
lization, and personnel utilization. The graph on the right hand side shows greater detail of the per-
formance measure by depicting values of the individual parameters. An additional class called
Dynamics was implemented as a subclass of Frame. Dynamics is useful to display visualiza-
tion of the processes involved in airbase maintenance. Figure 12 illustrates a dynamics window
which shows the number of aircraft waiting for take off, in flight, waiting for maintenance, and in
maintenance during a time in the simulation. Through mouse clicks, a user can alter information on
maintenance operations and also dynamically alter the mode of sortie generation even while the

simulation continues to execute.

16

SimBase

InformationStorage

ActiveSimulationObject

Ll

Figure 6
Hierarchy of Salient Classes in the Simulation of Airbase Logistics Domain.

17

totaiHangarUse

totalPersonnelUse

totalEquipmentUse

totalSorties

totalAbortedSorties

totalAbortedMissions

totalAlrTime

totalMaintidleTime

Figure 7
Interface for the Solution Explorer to Obtain Input on Performance Measures.

18

. Figure 8
Input Screen for the User to Specify Weights to the Different Performance Measures.

The interactive analyzer stores relevant information for several runs of each design. The data on the
performance measures collected during simulation are used by the analyzer to generate mean, vari-
ance, and confidence interval at the user-specified alpha level. These values are used to identify the
Pareto optimal solution. In a Pareto optimal set, the dominated solutions are eliminated from further
consideration. An analyst can specify different weights for the performance measures and can use
the interactive analyzer to examine the effects on the alternatives. Figure 13 presents a pictorial rep-

resentation of a Pareto optimal solution for an aircraft repair time analysis problem.

Thus, our integrated architecture is useful for simulation, solution exploration, search space prun-

ing, and evaluation of solutions in multi-objective problems. The next section presents an overview

of related research efforts.

19

Initializing AirCraft, Personnel, Equipment, Hangars....

Executing Simulation...

fitness
fitness

of design0O is 0.71
of designl is 0.6

The best design no is 0

Performing GA operations. ..

raw score read from output file: outsetO0 is 0.71
raw score read from output file: outsetl is 0.6

Fitness
Minimum
Maximum
Average
Fitness

Statistics for the current generation:
Fitness 0.6

Fitness 0.71

Fitness 0.65

Sum 1.31

Encoding Genomel:

StringValue: 121702030202020202
Fitness Value: 0.71

Raw Scores: 0.65

decodeFile: inpset0

encodeFile: outset0

Encoding Genome2:

StringValue: 010203030101020201
Fitness Value: 0.6

Raw Scores: 0.6

decodeFile: inpsetl

encodeFile: outsetl

Several areas including object-based simulations, visual interactive simulations, genetic algo-
rithms, and interactive optimization are relevant to the research effort described in this report. A
brief overview of the relevant research areas are reviewed in this section in the context of the results

of this study.

Recently, there has been a growing interest in object-oriented programming (OOP) applied to sim-
ulation modeling of complex systems. Modular design, software reusability, potential for natural
mappings, and compatibility between the OOP paradigm and the discrete-event world view formal-
ism are primary reasons for this interest. BLOCS/M (Adiga & Glassey, 1991), DEVS (Zeigler,
1991), OOSIM (Narayz;nan et al., 1992, 1996), and OSU-CIM (Mize et al., 1992) are examples of

Figure 9
Hlustrative Example of GA-based Iteration.

RELATED RESEARCH

Object-Based Simulations

20

¥
REV:
e

SRR

&

S
DR

X

SR

3

SO
RN
BERS
S

oS

o

P

AR

SRS
AR

SRR
S

SR
S

S

o5

X

3
%

SR
R
SRR
Roa

“v
%
SR
SRR
ons 52@
SRR @2‘3‘
S

SR

SRR

40(‘){’ 2L

.

235

e

A

Figure 10

&%
o
% %
L
Codieeiii s
SRS SRS
I I B 25
.

%
&

&

SEgs
o 6‘%3(’)??“’/%

.

53

AR
S

NG
?

5K

SRR

SN

SR

%

X

R s

&
S
sy

RO
o
e

I I
B9 S

SV

S

R

2

X
R
R 5

SN
s

7 S
i
SO

,’(5

%
2%
s

50

AN

Main Interface Window for the Interactive Analyzer.

21

\

J,j%d S
S s
ARSI
S
G
%

BSERy

5

RTINS

S
ﬁv =
S

Conn el

o WA
v

uonezinn wawdinby

-olez(f~ R SLCIbT

pe.aLI) $0R10-

Figure 11
Graphical Output of a Snapshot of Airbase Simulation.

22

i

ragpabesr of

Figure 12
Visualization of the Dynamics in Airbase Simulation.

23

o

2

.

SRR

13

igure

F

tion for an A

is Problem.

Time Analysi

1r

ft Repa

imal Solu ircra

Pareto Opt

24

several object-based simulation architectures for modeling systems in the manufacturing domain.
IMDE is an object-based architecture developed for airbase logistics simulations (Carrico & Clark,
1995; Carrico et al., 1995). The object-based design of the simulator in the architecture we have de-
veloped is also motivated in part by considerations of natural mapping, modularity, and software
reusability. In addition, since our architecture is implemented in Java, it is highly portable. We have
also made a distinction between decision-making objects, physical objects, and information storage
objects which facilitates modular representation. The simulator in the interactive analyzer compo-
nent contains objects to develop graphical user interfaces in addition to objects for simulating sys-
tems. Most simulation architectures described in the literature do not have a built-in architecture for
developing graphical interfaces. Perhaps the most significant difference between our architecture
and the other efforts in object-based simulation research is the incorporation of the solution explorer
component through genetic algorithms and the accommodation of human interaction in the interac-
tive analyzer component in the selection between alternatives. In many of the other object-based
simulation efforts, the simulations are descriptive and the alternatives to be evaluated have to be

specified manually.

Visual Interactive Simulations

With the advances in computing power and graphical user interfaces, there is an increasing interest
in the area of visual interactive simulations (Bell & O'Keefe, 1987; Bell, 1991; Hurrion, 1980; Lyu
& Gunasekaran, 1993; McGregor & Randhawa, 1994). In visual interactive simulations (VIS), in-
terfaces serve to not only display the state of the simulated system, but also to allow an analyst to
interact with the executing simulation. As the simulation executes in real time or scaled time, the

analyst can modify the parameters and alter the dynamics of the simulated system.

The VIS approach offers several potential advantages. First, it allows the user to interactively make
complex decisions. For example, Hurrion and Secker (1978) found that the rules used by human
schedulers in job shop scheduling were difficult to encapsulate in simulation models. VIS offered
a viable alternative by allowing complex decisions to be made externally. Second, VIS are useful
in studying the effectiveness of real-time, human decision making in complex systems. Dunkler et
al. (1988), for example, used an interactive simulation of a flexible manufacturing system and com-
pared the effectiveness of various automatic scheduling strategies with that of human scheduling in
expediting parts through the system. Third, the display of the simulated system in VIS can be visu-

ally appealing and can increase effective communication between a manager and the simulation an-

25

alyst in model development (Bell, 1991; Bishop & Balci, 1990). Fourth, the dynamic visual
representation in VIS can highlight logical inconsistencies in the model and can therefore be effec-
tive in model verification and validation. Finally, since the user of VIS actively participates in the
execution of the simulation, there is potential for increased user confidence in a})plying the results

of the simulation (Kirkpatrick & Bell, 1989).

O’Keefe (1987) outlines different perspectives of visual interactive simulations: statistical, decision
support, and simulator. Under the statistical view, there is little or no user interaction with the sim-
ulation mode! during program execution. The interfaces under this mode are primarily for post-sim-
ulation animation or performance analysis (Bishop & Balci, 1990). Under the decision support
perspective, emphasis is placed on what-if analysis by the user. A user can evaluate alternate sce-
narios through interaction with the simulation model. The interaction can be user initiated or model
prompted. Prompting the user to make a scheduling decision is an example of model-prompted in-
teraction. A situation where a user observes a critical situation in the simulated system and dispatch-
es a constrained resource during the execution of the simulation program is an example of user-
initiated interaction. Under the simulator view, interactive simulation architectures can be used to
develop human-in-the-loop simulations. Such simulators can provide a powerful synthetic environ-
~ ment for training of human operators in complex systems. Interaction with a high-fidelity synthetic
representation of the system can be effective in enhancing user understanding of the complexities

of the large, dynamic system.

The major challenges in developing interactive simulations are problems associated with computer
hardware and software (Bell & O'Keefe, 1987). Bell (1991) highlights the historic struggle of the
early VIS development efforts with advances in computer hardware. Early VIS systems including
See-Why were developed for large main frames. Currently, personal computers and workstations
have become the standard for systems development. Most VIS packages currently available are still

hardware dependent and suffer from problems of portability.

Interactive simulations suffer from software problems as well. Several early interactive simulation
packages were developed in FORTRAN (e.g., FORSSIGHT). Developmental interest has moved
towards C and recently towards object-oriented languages (e.g., Prof 1 SEE in Smalltalk-80 [Vaes-
sen, 1989]). While object-oriented programming offers many advantages for simulation modeling

in terms of modularity, software reuse, and natural mapping with real world entities (Narayanan et

26

al., 1996), their application to developing interactive simulations has not been widespread (Bell,
1991). The software to display the simulation model and to facilitate user interaction are often em-
bedded in the simulation model. Such tight integrations make it difficult to maintain large simula-
tion programs and pose limitations in the development of multiple interfaces to a simulation model.
The coupling of the simulation model with the interface also makes it difficult for the concurrent

development of simulation models and their user interface.

This interactive analyzer component of our system contains a Java-Based Architecture for Devel-
oping Interactive Simulations (JADIS). JADIS is hardware independent. JADIS uses the Model-
View-Controller (MVC) paradigm from Smalltatk (Goldberg, 1990). The simulation model allows
multiple interfaces which are separate processes that execute concurrently on different machines.
JADIS integrates concepts from object-oriented programming, concurrent processing, and graphi-

cal user interfaces (GUI) to provide a powerful design approach to interactive simulations.

Genetic Algorithms & Interactive Optimization

Our study presented an interesting application for GAs. Traditionally, GAs have been applied for’
difficult function optimization and control applications (Goldberg, 1989). GAs are computationally
simple yet powerful in their search for improvement of solutions. They are not limited by restrictive
assumptions about the search space by features such as continuity, existence of derivatives and re-
lated notions. For a mathematically complex problem such as aircraft repair time analysis, a GA-
based approach to explore the solution space and prune the space into a few good alternatives is
appealing. There is an increasing concern in the operations research community on the limitations
of mathematical models in providing the answer to complex problems where the answer provided
may be a result of unrealistic assumptions (Brill et al., 1990). Several researchers believé that the
role of models should be to provide “intuition, insight, and understanding that supplements that of

the decision makers.”

Interactive optimization exploits the user’s ability to address the difficult-to-quantify issues, while
utilizing the computer to perform the necessary complex numerical calculations (Nulty & Ratliff,
1991). The fundamental components of an interactive optimization system are: (1) models that aid
in the solution process, (2) the methodology of user interaction, and (3) the interactive interface be-
tween user and the computer. In the modeling component, Nulty and Ratliff (1991) use an integer

programming formulation to the problem of Naval fleet scheduling. In their approach, mathematical

27

algorithms generate a solution to the problem. Then user then uses a graphical interface to tune the
solution by modifying parameters to the solution. The algorithms are then reapplied to the entire
problem or pieces of the solution. The process is repeated until a satisfactory solution is obtained.
The approach we have developed has several interesting similarities and a few major differences.
First, the underlying model in the solution generation is based on genetic algorithms. Consequently,
the goal is to generate a set of good feasible solutions to the problem in contrast to the generation
of the answer to the problem. While the mathematical modeling approach may be more suitable for
certain problem whicil lend themselves to an analytical formulation, our approach is particularly
useful in situations where a mathematical formulation is very difficult. Our approach lends itself to
generation of multiple alternatives. The human analyst has the capability of examining several dif-
ferent alternatives in detail during the interactive analysis phase. Brill et al., (1990) provide an ex-
cellent review of human decision making literature relevant to the process of generation of
hypothesis and alternative selection for ill-defined problems. Empirical studies in human-machine
decision making have shown that humans perform well when presented with a few, different alter-
natives than when presented a homogeneous set of alternatives (or a single alternative) as might re-

sult during sensitivity analysis in math programming methods (Brill et al., 1990).

CONCLUSIONS

We outlined an approach integrating simulation, evolutionary learning, and human interaction to
support generation of satisfactory solutions to complex problems in airbase logistics planning. Our
approach is embedded in an architecture which has two major components: (1) a solution explorer,
and (2) an interactive analyzer. The solution explorer generates good feasible design alternatives,
while the interactive analyzer assists in the selection of the “best” feasible alternative by providing
a synthetic environment for what-if analysis. The architecture is implemented in Java and is porta-
ble across computing platforms. Our architecture is useful for simulation, solution exploration,

search space pruning, and evaluation of solutions in multi-objective problems.

Preliminary results of the application of the approach to an aircraft repair time analysis problem are
promising. The solution explorer eliminated several inferior design solutions and was able to gen-
erate more solutions of better quality during the GA-based iterative process. Additional application
of the architecture to real airbase logistic problems should provide further insights on the effective-

ness of our integrative approach. An obvious future step is to enhance the scale of the architecture

28

for a real aircraft maintenance problem and document the strengths and drawbacks of our approach.

The effectiveness of the interactive analyzer should also be formally evaluated.

In summary, we have demonstrated how simulation, evolutionary learning, and human interaction
can be integrated to form a useful too! in solving ill-defined problems in aircraft repair time analy-
sis. Our approach is particularly useful for situations involving multiple objectives where the prob-
lem objectives and constraints can not be easily represented in a purely analytical approach. The
role of the simulation is to instantiate a descriptive model of the system being studied and to eval-
uate designs, the GA-based iterator performs random, but directed search based on genetic opera-
tors such as reproduction, crossover, and mutation to generate good solutions to the problem, the
human is involved in parameter specification and detailed interactive analysis to select among a set
of alternative solutions. Future work will involve a formal evaluation of the architecture for realistic
data, extension of the architecture to related problems, refinement of the genetic algorithm iterator,

and enhancement of visualization capabilities in the interactive analyzer.

BIBLIOGRAPHY

[1] Adiga, S. & Glassey, C. R. (1991). Object-oriented simulation to support research in manufacturing sys-
tems. International Journal of Production Research, 29 (12): 2529-2542.

[21 Ammons, J. C., Govindaraj, T., & Mitchell, C. M. (1988). A supervisory control paradigm for real-time
control of flexible manufacturing systems. Annals of Operations Research, 15: 313-335.

[3] Arango, G. & Prieto-Diaz, R. (1991). Domain analysis: Concepts and research directions. In Domain
Analysis and Software Systems Modeling, (eds.) R. Prieto-Diaz & G. Arango. IEEE Computer Press, p. 12.

[4] Bell, P. C. (1991). Visual interactive modelling: The past, the present, and the prospects. European Jour-
nal of Operational Research, 54, 274-286.

[51 Bell, P. C. & O'Keefe, R. M. (1987). Visual interactive simulation - History, recent developments, and
major issues. Simulation, 49(3):109-116.

[6] Bishop, J. L. & Balci, O. (1990). General purpose visual simulation system. Proceedings of the 1990 Win-
ter Simulation Conference. 504-512.

[7]1 Boyle, E. (1990). LCOM explained. Technical report, AFHRL-TP-90-58, Air Force Human Resources
Laboratory, Wright-Patterson Air Force Base, OH.

[8] Brantley, P., Fox., B. L., & Schrage, L. E. (1987). A Guide to Simulation, 2nd Edition, Springer-Verlag,
New York.

[9] Brill, Jr., E. D., Flach, J. M., Hopkins, L. D., & Ranjithan, S. (1990). MGA: A decision support system
for complex, incompletely defined problems. IEEE Transactions on System, Man, & Cybernetics. 20 (4):
745-7517.

[10] Carrico, T., Clark, P. K., Shute, N. J., and Zahn, E. A. (1995). Integrated Model Development Environ-
ment (IMDE) multi-function aerospace support system. Technical report, AL/HR-TR-1995-0186, Armstrong
Laboratory, WPAFB, Dayton, OH.

[11] Carrico, T. & Clark, P. K. (1995). IMDE support for Air Force logistics. Technical report, AL/HR-TR-
1995-0187, Armstrong Laboratory, WPAFB Dayton, OH.

{12] Dunkler, O., Mitchell, C. M., Govindaraj, T., & Ammons, J. C. (1988). The effectiveness of supervisory
control strategies in scheduling flexible manufacturing systems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-18, 223-237.

[13] Fishwick, P. A. (1996). Web-based simulation: some personal observations. To appear in the Proceed-
ings of the 1996 Winter Simulation Conference, San Diego, CA.

[14] Gobbetti, E. & Turner, R. (1991). Object-oriented design of dynamic graphics applications. /n New
Trends in Animation and Visualization, N. M. Thalmann and D. Thalmann Eds., Wiley Professional Comput-
ing, Sussex, England, 43-58.

[15] Goldberg, A. (1990). Information models, views, and controllers. Dr. Dobb's Journal, July, 54-61.

[16] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley, Reading, MA.

[17] Hurrion, R.D. (1980). An interactive visual simulation system for industrial management. European
Journal of Operational Research, 5(2): 86-94.

[18] IEEE Standard for Information Technology. (1993). Protocols for distributed simulation applications:
Entity information and interaction. /EEE Standard 1278-1993. New York: IEEE Computer Society.

[19] Kirkpatrick, P.F. & Bell, P.C. (1989). Visual interactive modeling in industry: Results from a survey of
visual interactive model builders. Interfaces, 19, 71-79.

[20] Korson, T. & McGregor, J. D. (1990). Understanding object-oriented: a unifying paradigm. Communi-
cations of the ACM, 33 (9), 40-60.

[21] Krasner, G. E. & Pope, S. T. (1988). A cookbook for using the model-view controller user interface par-
adigm in Smalltalk 80. Journal of Object Oriented Programming, August/September, 26-49.

[22] Law, A. M. & Kelton, W.D. (1991). Simulation Modeling and Analysis, 2nd Edition, McGraw-Hill, New
York.

[23] Lemay, L. & Perkins, C. L. (1996). Teach yourself Java in 21 days. Sams.Net Publishing.

[24] Lyu, J. & Gunasekaran, A. (1993). Developing a visual interactive simulation model for flexible man-
ufacturing systems. International Journal of Operations and Production Management, 13(6): 59-67.

[25] Lu, S. C.Y., Tcheng, D. K., & Yerramareddy, S. (1991). Integration of simulation, learning, and opti-
mization to support engineering design. Annals of the CIRP, 40(1), 143-146.

[26] Martin, J. & Odell, J. J. (1995). Object-oriented methods: A Foundation. Prentice Hall, New Jersey.

[27] Mollamustafaoglu, L., Gurkan, G., & Ozge, A. Y. (1993). Object-oriented design of output analysis
tools for simulation languages. Simulation. January, 6-15.

[28] Mize, J. H., Bhuskute, H. C., Pratt, D. B., & Kamath, M. (1992). Modeling of integrated manufacturing

systems using an object-oriented approach. IIE Transactions, 24 (3), 14-26.

[29] Narayanan, S., Bodner, D. A., Mitchell, C. M., McGinnis, L. F., Govindaraj, T., & Platzman, L. K.
(1992). Object-oriented simulation to support modeling and control of automated manufacturing systems. In
Proceedings of the 1992 Western Multiconference, San Diego: Society for Computer Simulation, 55-63.

[30] Narayanan, S., Bodner, D. A., Sreekanth, U., Govindaraj, T., McGinnis, L. F., & Mitchell, C. M. (1996).
Research in object-oriented manufacturing simulations: An assessment of the state of the art. To appear in //E
Transactions.

[31] Narayanan, S., Schneider, N. L., Patel, C., Reddy,N, Carrico, T. M., & DiPasquale, J. (1997). An object-
based architecture for developing interactive simulations using Java. Submitted to The Simulation journal.

[32] Niemeyer, P. & Peck, J. (1996). Exploring Java. O’Reilly & Associates, Inc.

[33] Nulty, W. G., & Ratliff, H. D. (1991). Interactive optimization methodology for fleet scheduling. Naval
Research Logistics, 38, 669-677.

[34] O’Keefe, R. M. (1987). What is visual interactive simulation? (and is there a methodology for doing it
right?). In Proceedings of the 1987 Winter Simulation Conference. A. Thesen, H. Grant, & W. D. Kelton
(Eds.), IEEE, Piscataway, NJ, 461-464.

[35] Paul, R.J. (1989). Visual simulation: Seeing is believing. In Impacts of Recent Computer Advances on
Operations Research. R. Sharda, B. L. Golden, E. Wasil, O. Balci, and W. Stewart, Eds. Elsevier Science
Publishing, New York, NY, 422-432.

[36] Mathewson, S. C. (1984). The application of program generator software and its extensions to discrete
event simulation modeling. I/E Transactions. 16(1): 3-17.

[37] McGregor, D. R. & Randhawa S. U. (1994). ENTS: An interactive object-oriented system for discrete
simulation modeling. Journal of Object-Oriented Programming, January, 21-29.

[38] Popken, D. A. (1992). An object-oriented simulation environment for airbase logistics. Simulation.
59(5): 328-338.

[39] Rooks, M. (1993). A user-centered paradigm for interactive simulation. Simulation, 60(3): 168-177.

[40] Shan, Y-P. (1990). MoDE: A UIMS for Smalltalk. University of North Carolina, Chapel Hill, TR90-
017, DTIC.

[41] Zeigler, B. P. (1991). Object-oriented simulation with hierarchical, modular models: Intelligent agents
and endomorphic systems, San Diego: Academic Press.

APPENDIX

Glossary of Commonly Used OOP Terms (Korson & McGregor, 1990).

Data encapsulation: Describes the hiding of data structures and the implementation of procedures
called methods to operate on the data of an object. In Java, the S12SS construct is used for data

encapsulation. The class combines the structure and behavior of similar objects in its representation.

Inheritance: A technique for deriving new classes from existing ones through subclassing. A sub-

class inherits both data and methods of the super class (called parent).
Reuse: The ability to use the same software elements for several purposes in different applications.

Polymorphism: The ability to take more than one form. Through polymorphism, the same method

results in different behavior depending on run-time binding of objects.
Object: An entity which is a realization of a class, also called as an instance of a class.

Method: A function or procedure associated with a class.

